Roll No.
Total No. of Questions: 13]
[Total No. of Pages : 03

Paper ID [A0208]
 (Please fill this Paper ID in OMR Sheet)
 BCA (203) (Old) / (S05) (Sem. - 2 ${ }^{\text {nd }}$)
 B.Sc. IT (202) (New)
 MATH - I (Discrete)

Time : 03 Hours
Maximum Marks : 75
Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Nine questions from Section - B.

Section - A

Q1)
a) Define inverse relation with example.
b) Define into and onto functions.
c) Prove $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$.
d) Draw venn diagram for the symmetrical difference of sets A and B.
e) Define partition of a set with example.
f) Form conjuction of p and q for the following: $p:$ Ram is healthy, $q:$ He has blue eyes.
g) If $p:$ It is cold, $q:$ It is raining, write the simple verbal sentence which describe (i) $p \vee q$ (ii) $p \vee \sim q$.
h) Define logical equivalence.
i) Prove that proposition $p \vee \sim p$ is tautology.
j) Define Biconditional statement.
k) Define undirected graph with example.

1) Edge of a graph that joins a node to itself is called? And Edges joins node by more than one edges are called?
m) Define Null graph with example.
n) Does there exist a 4 - regular graph on 6-vertices, if so construct a graph.
o) Prove $\mathrm{V}\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)=\mathrm{V}\left(\mathrm{G}_{1}\right) \cap \mathrm{V}\left(\mathrm{G}_{2}\right)$ with example.

Section - B

$(9 \times 5=45)$
Q2) Let $\mathrm{R}=\{(1,2),(2,3),(3,1)\}$ and $\mathrm{A}=\{1,2,3\}$. Find Reflexive, symmetric, and transitive closure of R using composition of relation R .

Q3) If $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be functions, then prove
(a) If f and g are injections, then $g o f: \mathrm{A} \rightarrow \mathrm{C}$ is an injection.
(b) If f and g are surjections then so is $g o f$.

Q4) Prove that $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$.

Q5) Show that set of real numbers in [0, 1] is uncountable set.

Q6) A man has 7 relatives, 4 of them are ladies, and 3 are gentlemen, his wife has 7 relatives and 3 of them are ladies and 4 are gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 man's relatives and 3 of wife relatives.

Q7) Using truth table show that $\sim(p \wedge q) \equiv(\sim p) \vee(\sim q)$.

Q8) Consider the following:
p : It is cold day, q : the temperature is $50^{\circ} \mathrm{C}$
write the simple sentences meaning of the following:
(a) $\sim p$
(b) $p \vee q(\mathrm{c}) \sim(p \vee q)$
(d) $\sim p \wedge \sim q$
(e) $\sim(\sim p \vee \sim q)$

Q9) Prove that following propositions are tautology.
(a) $\sim(p \wedge q) \vee q$
(b) $p \Rightarrow(p \vee q)$

Q10)Show that two graphs shown in figure are isomorphic.

Q11)Prove a non-empty connected graph G is Eulerian if and only if its all vertices are of even degree.

Q12)Define graph coloring and chromatic number with two examples of each.

Q13)Prove a simple graph G has a spanning tree if and only if G is connected.

